Share Email Print

Proceedings Paper

Rubidium spectroscopy with 778- to 780-nm distributed feedback laser diodes
Author(s): Anselm Deninger; Sebastian Kraft; Frank Lison; Claus Zimmermann
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Distributed feedback (DFB) laser chips have recently become available at wavelengths that match the D1 and D2 resonance transitions of alkaline atoms. We investigated the spectral properties, tuning characteristics and modulation behavior of continuous wave, single-mode DFB diodes at 778-780 nm and performed high-resolution spectroscopy of Rubidium vapor. The mode-hop free tuning range of the DFB diodes was as large as 2.4 nm (1186 GHz). The line width of the laser diodes was examined both with a heterodyne beat experiment and with high-resolution Doppler-free two photon spectroscopy, yielding a half width of 2-2.5 MHz. The saturation spectra of the D2-line of 85Rb and 87Rb were recorded with a resolution close to the natural line width. The emission frequency was actively stabilized to Doppler-free transitions with a relative accuracy of better than 4 parts in 109 using commercially available servo devices only. The output power of 80 mW was sufficient to allow for two photon spectroscopy of the 5S-5D-transition of 87Rb. We conclude that the performance of the DFB laser equals that of grating-stabilized external-cavity diode lasers (ECDLs), without the mechanical complexity of the latter systems. The DFB diode is thus well-suited to high-resolution applications in alkaline spectroscopy, including laser cooling and optical manipulation of ultra-cold atoms.

Paper Details

Date Published: 28 April 2005
PDF: 9 pages
Proc. SPIE 5722, Physics and Simulation of Optoelectronic Devices XIII, (28 April 2005); doi: 10.1117/12.590386
Show Author Affiliations
Anselm Deninger, TOPTICA Photonics AG (Germany)
Sebastian Kraft, Univ. Tuebingen (Germany)
Frank Lison, TOPTICA Photonics AG (Germany)
Claus Zimmermann, Univ. Tuebingen (Germany)

Published in SPIE Proceedings Vol. 5722:
Physics and Simulation of Optoelectronic Devices XIII
Marek Osinski; Fritz Henneberger; Hiroshi Amano, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?