Share Email Print

Proceedings Paper

New mechanism of ultra-deep drilling of solids by high-power lasers
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A new mechanism of ultra-deep drilling and related molten material expulsion during high-power short-pulse laser ablation of metals, semiconductors and dielectrics is proposed. In this mechanism ultra-deep (multi-micron) heat penetration and melting depths in these materials are assumed to result from their bulk absorption of thermal short-wavelength con-tinuous and characteristic radiation emitted by hot near-surface ablative laser plasmas. Multi-microsecond delays for expulsion of subsonic jets of micron-size droplets and for re-radiation of UV bursts from the irradiated targets are ex-plained by subsurface explosive boiling in bulk of the resulting ultra-deep melt pool.

Paper Details

Date Published: 12 April 2005
PDF: 8 pages
Proc. SPIE 5713, Photon Processing in Microelectronics and Photonics IV, (12 April 2005); doi: 10.1117/12.589234
Show Author Affiliations
Sergey I. Kudryashov, Arkansas State Univ. (United States)
Andrew V. Pakhomov, Univ. of Alabama in Huntsville (United States)
Susan D. Allen, Arkansas State Univ. (United States)

Published in SPIE Proceedings Vol. 5713:
Photon Processing in Microelectronics and Photonics IV
Jim Fieret; David B. Geohegan; Friedrich G. Bachmann; Willem Hoving; Frank Träger; Peter R. Herman; Jan J. Dubowski; Tatsuo Okada; Kunihiko Washio; Yongfeng Lu; Craig B. Arnold, Editor(s)

© SPIE. Terms of Use
Back to Top