Share Email Print

Proceedings Paper

Chemical and biological sensing through optical resonances in microcavities
Author(s): Melikhan Tanyeri; Mikaela Nichkova; Bruce D Hammock; Ian M. Kennedy
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A microdroplet or a latex microsphere often acts as an optical cavity that supports Morphology Dependent Resonances (MDRs) at wavelengths where the droplet circumference is an integer multiple of the emission wavelength. Enhanced radiative energy transfer through these optical resonances can also be utilized as a transduction mechanism for chemical and biological sensing. Enhancement in radiative energy transfer is observed when a donor/acceptor pair is present in the resonant medium of a microcavity. Here, we demonstrate avidin-biotin binding and its detection through a FRET pair as a potential application for ultra-sensitive detection for fluoroimmunoassays. The binding interaction between the biotinylated fluorescent beads (donor) and streptavidin-Alexa Fluor 555 (acceptor) conjugate was used to observe the energy transfer between the dye pairs. Strong coupling of acceptor emission into optical resonances shows that the energy transfer is efficiently mediated through these resonances.

Paper Details

Date Published: 29 March 2005
PDF: 10 pages
Proc. SPIE 5699, Imaging, Manipulation, and Analysis of Biomolecules and Cells: Fundamentals and Applications III, (29 March 2005); doi: 10.1117/12.588169
Show Author Affiliations
Melikhan Tanyeri, Univ. of California/Davis (United States)
Mikaela Nichkova, Univ. of California/Davis (United States)
Bruce D Hammock, Univ. of California/Davis (United States)
Ian M. Kennedy, Univ. of California/Davis (United States)

Published in SPIE Proceedings Vol. 5699:
Imaging, Manipulation, and Analysis of Biomolecules and Cells: Fundamentals and Applications III
Dan V. Nicolau; Dan V. Nicolau; Jörg Enderlein; Ramesh Raghavachari; Robert C. Leif; Daniel L. Farkas, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?