Share Email Print

Proceedings Paper

High-power thulium fiber laser ablation of the canine prostate
Author(s): Nathaniel M. Fried; Keith E. Murray
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The Thulium fiber laser may have several advantages over current urology lasers, including smaller size, more efficient operation, improved spatial beam quality, more precise tissue incision, and operation in pulsed or continuous-wave modes. However, previous laser-tissue interaction studies utilizing the Thulium fiber laser have been limited to laser powers of less than 5 W. This study describes high-power Thulium fiber laser vaporization of the canine prostate, ex vivo. A continuous-wave, 110-watt Thulium fiber laser operating at a wavelength of 1.91 mm, delivered 88.5 ± 2.3 W of power through a 600-mm-core silica fiber for non-contact vaporization of canine prostates (n=6). The Thulium fiber laser vaporized prostate tissue at a rate of 0.83 ± 0.11 g/min. The thermal coagulation zone measured 500-2000 mm. The high-power Thulium fiber laser is capable of rapid vaporization and coagulation of the prostate, ex vivo. In vivo animal studies are currently in development for evaluation of the Thulium fiber laser for prostate vaporization and potential treatment of benign prostate hyperplasia.

Paper Details

Date Published: 25 April 2005
PDF: 7 pages
Proc. SPIE 5686, Photonic Therapeutics and Diagnostics, (25 April 2005); doi: 10.1117/12.586358
Show Author Affiliations
Nathaniel M. Fried, Johns Hopkins Medical Institutions (United States)
Keith E. Murray, NASA Langley Research Ctr. (United States)

Published in SPIE Proceedings Vol. 5686:
Photonic Therapeutics and Diagnostics
Brian Jet-Fei Wong M.D.; Eugene A. Trowers M.D.; Kenton W. Gregory M.D.; Abraham Katzir; Nikiforos Kollias; Reza S. Malek M.D.; Henry Hirschberg M.D.; Kenneth Eugene Bartels D.V.M.; Steen J. Madsen; Lloyd P. Tate V.D.M.; Lawrence S. Bass M.D.; Werner T. W. de Riese; Karen M. McNally-Heintzelman, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?