Share Email Print

Proceedings Paper

Influence of adding strong-carbide-formation elements multiply on particle-reinforced Fe-matrix composite layer produced by laser cladding
Author(s): Mingxing Ma; Wenjin Liu; Minlin Zhong; Hongjun Zhang; Weiming Zhang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In the research hotspot of particle reinforced metal-matrix composite layer produced by laser cladding, in-situ reinforced particles obtained by adding strong-carbide-formation elements into cladding power have been attracting more attention for their unique advantage. The research has demonstrated that when adding strong-carbide-formation elements-Ti into the cladding powder of the Fe-C-Si-B separately, by optimizing the composition, better cladding coating with the characters of better strength and toughness, higher wear resistance and free of cracks. When the microstructure of cladding coating is hypoeutectic microstructure, its comprehensive performance is best. The research discovered that, compositely adding the strong-carbide-formation elements like Ti+V, Ti+Zr or V+Zr into the cladding coating is able to improve its comprehensive capability. All the cladding coatings obtained are hypoeutectic microstructure. The cladding coatings have a great deal of particulates, and its average microhardness reaches HV0.2700-1400. The research also discovered that the cladding coating obtained is of less cracking after adding the Ti+Zr.

Paper Details

Date Published: 13 January 2005
PDF: 7 pages
Proc. SPIE 5629, Lasers in Material Processing and Manufacturing II, (13 January 2005); doi: 10.1117/12.577033
Show Author Affiliations
Mingxing Ma, Tsinghua Univ. (China)
Wenjin Liu, Tsinghua Univ. (China)
Minlin Zhong, Tsinghua Univ. (China)
Hongjun Zhang, Tsinghua Univ. (China)
Weiming Zhang, Tsinghua Univ. (China)

Published in SPIE Proceedings Vol. 5629:
Lasers in Material Processing and Manufacturing II
ShuShen Deng; Akira Matsunawa; Y. Lawrence Yao; Minlin Zhong, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?