Share Email Print

Proceedings Paper

Experimental study on plasma inside the keyhole in deep penetration laser welding
Author(s): Yi Zhang; Lijun Li; Gang Zhang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Deep penetration laser welding is associated with violent plasma generation characterized by high charge densities. Plasma resides both outside and inside the keyhole, known as plasma plume and keyhole plasma, respectively. Plasma plume outside the keyhole has been studied extensively due to its convenient observation; however, very little work has concentrated on the analysis of the keyhole plasma. In this article, a specially designed setup was used to take firsthand measurements of the light emission of the keyhole plasma in deep penetration laser welding aluminum films clamped in between two pieces of GG17 glass that we called it a “sandwich” sample, triumphantly eliminating the impact of the plasma plume covering the keyhole on the observation of keyhole plasma. Results of spectroscopic measurements of both plasma plume and keyhole plasma under welding conditions were obtained with orthogonal experimental design. It was shown that keyhole plasma had considerable effects on the energy transfer efficiency of the incident laser beam to the material, exhibiting various melting width and depth; deeper welding depth as well as lower temperature of the keyhole plasma was obtained when decreasing the densities of the keyhole plasma by reducing the thickness of aluminum films.

Paper Details

Date Published: 13 January 2005
PDF: 10 pages
Proc. SPIE 5629, Lasers in Material Processing and Manufacturing II, (13 January 2005); doi: 10.1117/12.574813
Show Author Affiliations
Yi Zhang, Hunan Univ. (China)
Lijun Li, Hunan Univ. (China)
Gang Zhang, Hunan Univ. (China)

Published in SPIE Proceedings Vol. 5629:
Lasers in Material Processing and Manufacturing II
ShuShen Deng; Akira Matsunawa; Y. Lawrence Yao; Minlin Zhong, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?