Share Email Print

Proceedings Paper

A-O Q-switching of 2.1-µm laser
Author(s): Jia Zheng; Jingjiao Liu; Yi Tang; Yongzhao Hu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

2.1μm solid state laser operating at room temperature is a very useful laser source for optical communication, medical care, air pollution monitoring and Lidar, etc. It is eye-safe. It is also a very ideal pump source for optic parametric oscillator to get 3μm -5μm radiation. In order to further explore its potential applications, higher peak power and shorter pulse width are very desirable. Q-switching the laser is a most practical way to realize those goals. Among the most common used Q-switching techniques, mechanical Q-switching is not preferred due to that it involves use of a rotating motor, which has lower life time and causes undesirable vibration. E-O Q-switch material in this wavelength range is very expensive and quite susceptible to optical damage. On the other hand, low OH concentration quartz material exhibits very low absorption at the 2.1μm. The Cr:Tm:Ho:YAG 2.1μm laser has undesirable lower gain from the laser efficiency point of view, but offers a feasibility of using the A-O device for the Q-switching even the laser is pulse pumped. The Cr:Tm:Ho:YAG 2.1μm laser is a so called quasi-three level laser, which is characterized as having a higher threshold and lower gain. This study is focused on the optimization of the laser resonator design and the A-O Q-switch design for a higher laser peak power and shorter pulse width. Factors considered in the study include AO Q-switch’s RF frequency, modulation depth, active aperture, resonator length, resonator loss and pumping design, etc. Experiment results are compared with the Q-switched quasi-three level laser model. Final result of the Q-switched 2.1μm laser after preliminary optimization will be presented.

Paper Details

Date Published: 26 January 2005
PDF: 7 pages
Proc. SPIE 5627, High-Power Lasers and Applications III, (26 January 2005); doi: 10.1117/12.574541
Show Author Affiliations
Jia Zheng, Beijing Institute of Technology (China)
Jingjiao Liu, North Electronics Equipment Institute (China)
Yi Tang, Accu-Tech Company Ltd. (China)
Yongzhao Hu, North Electronics Equipment Institute (China)

Published in SPIE Proceedings Vol. 5627:
High-Power Lasers and Applications III
Dianyuan Fan; Ken-ichi Ueda; Jongmin Lee, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?