Share Email Print

Proceedings Paper

Evaluation of contact status between probe and skin for noninvasive blood sensing with NIR reflectance spectroscopy
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In non-invasive blood sensing with near-infrared (NIR) reflectance spectroscopy, optical probe usually directly contacts skin to eliminate specular reflection. Due to the direct contact, changes in contact pressure can lead to changes in internal structure and components distribution of the measured site, and thus introduces great interference into the final results. In this paper, we use self-made AOTF spectrophotometer to investigate the changes of reflectance spectrum with changing contact status for tissues in vitro (fresh porcine skin) and in vivo (two volunteers' left palms) at wavelengths ranging from 1100 nm to 1700 nm. The results show that with increasing degree of contact, energy of reflectance spectrum gradually decreases and the trend goes stable with time. However, the decreasing degree is related to wavelengths, which potentially suggests an indirect relevance with changes of components in tissues. Meanwhile, the results provide a practical solution to determining the optimum contact status between probe and skin.

Paper Details

Date Published: 29 July 2004
PDF: 7 pages
Proc. SPIE 5486, ALT'03 International Conference on Advanced Laser Technologies: Biomedical Optics, (29 July 2004); doi: 10.1117/12.571362
Show Author Affiliations
Qingjun Qiu, Tianjin Univ. (China)
Kexin Xu, Tianjin Univ. (China)
Jingying Jiang, Tianjin Univ. (China)
Wen Liang Chen, Tianjin Univ. (China)

Published in SPIE Proceedings Vol. 5486:
ALT'03 International Conference on Advanced Laser Technologies: Biomedical Optics
Ruikang K. Wang; Jeremy C. Hebden; Alexander V. Priezzhev; Valery V. Tuchin, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?