Share Email Print

Proceedings Paper

Object recognition using neural networks and high-order perspective-invariant relational descriptions
Author(s): Kenyon R. Miller; John F. Gilmore
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The task of 3-D object recognition can be viewed as consisting of four modules: extraction of structural descriptions, hypothesis generation, pose estimation, and hypothesis verification. The recognition time is determined by the efficiency of each of the four modules, but particularly on the hypothesis generation module which determines how many pose estimates and verifications must be done to recognize the object. In this paper, a set of high-order perspective-invariant relations are defined which can be used with a neural network algorithm to obtain a high-quality set of model-image matches between a model and image of a robot workstation. Using these matches, the number of hypotheses which must be generated to find a correct pose is greatly reduced.

Paper Details

Date Published: 1 February 1992
PDF: 10 pages
Proc. SPIE 1607, Intelligent Robots and Computer Vision X: Algorithms and Techniques, (1 February 1992); doi: 10.1117/12.57098
Show Author Affiliations
Kenyon R. Miller, Georgia Tech Research Institute (United States)
John F. Gilmore, Georgia Tech Research Institute (United States)

Published in SPIE Proceedings Vol. 1607:
Intelligent Robots and Computer Vision X: Algorithms and Techniques
David P. Casasent, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?