Share Email Print

Proceedings Paper

Air pollution monitoring with two optical remote sensing techniques in Mexico City
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An open-path Fourier Transform Infrared (FTIR) and a Differential Optical Absorption Spectrometer (DOAS) were installed and simultaneously operated along a 426 m optical path in downtown Mexico City. O3 and SO2 were measured by both optical remote sensing techniques and the results from the comparison are presented. The instruments presented comparable sensitivities for O3 and an excellent agreement (R2 > 0.99) in their correlation. Although the sensitivity of the infrared technique for SO2 was limited to concentrations > 20 ppb or so, the agreement of the FTIR response with the more sensitive DOAS technique during the high levels of this pollutant was favorable (R2 = 0.94) and accurate to within experimental error. These episodes (>100 ppb) were found to occur several times per month. Benzene and toluene were measured by the DOAS technique and their concentrations are reported for a 3-month period during 11/2 - 12/5, 2003. The mean and highest concentration registered for benzene was 5.1 and 18.7 ppb, respectively, with an average of daily maxima at 11.5 ppb. Toluene's highest concentration during this period reached 97.3 ppb, with a mean and daily maximum average of 13.4 and 41.7 ppb, respectively. A benzene/toluene ratio of 2.6 was determined for the entire period of study and a decrease of ~20% in the daily ambient concentration of these aromatic hydrocarbons was observed on Sundays relative to weekdays.

Paper Details

Date Published: 30 November 2004
PDF: 7 pages
Proc. SPIE 5571, Remote Sensing of Clouds and the Atmosphere IX, (30 November 2004); doi: 10.1117/12.565706
Show Author Affiliations
Michel Grutter, Univ. Nacional Autonoma de Mexico (Mexico)
Edgar Flores-Jardines, Univ. Nacional Autonoma de Mexico (Mexico)

Published in SPIE Proceedings Vol. 5571:
Remote Sensing of Clouds and the Atmosphere IX
Adolfo Comeron; Michel R. Carleer; Richard H. Picard; Nicolaos I. Sifakis, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?