Share Email Print

Proceedings Paper

Development and whirl tower test of the SMART active flap rotor
Author(s): Friedrich K. Straub; Dennis K. Kennedy; Alan D. Stemple; V.R. Anand; Terry S. Birchette
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A full scale Smart Material Actuated Rotor Technology (SMART) system with piezoelectric actuated blade flaps was developed and whirl tower tested. The development effort included design, fabrication, and component testing of rotor blades, trailing edge flaps, piezoelectric actuators, switching power amplifiers, and the data/power system. Simulations and model scale wind tunnel tests have shown that this system can provide 80% vibration reduction, 10dB noise reduction for a helicopter passing overhead, and substantial aerodynamic performance gains. Whirl tower testing of the 34-foot diameter rotor demonstrated the functionality, robustness, and required authority of the active flap system. The program involved extensive development work and risk reduction tests which resulted in a robust, high performance actuator and a tightly integrated actuator, flap, and blade system. The actuator demonstrated excellent performance during bench testing and has accumulated over 60 million cycles under a spectrum of loading conditions. The flight worthy active flap rotor blades were based on a modified design of the FAA certified MD900 Explorer production rotor blade. Whirl tower testing was conducted with full rotor instrumentation and a 5-component balance. The rotor was tested for 13 hours under a range of conditions, including 7 hours of flap operation. Flap inputs included open loop static and dynamic commands. The flaps showed excellent authority with oscillatory thrust greater than 10% of the steady baseline thrust. Various flap actuation frequency sweeps were run to investigate the dynamics of the rotor and the flap system. Limited closed loop tests used hub accelerations and hub loads for feedback. Proving the integration, robust operation, and authority of the flap system were the key objectives met by the whirl tower test. This success depended on tailoring the piezoelectric materials and actuator to the application and meeting actuator/blade integration requirements. Test results demonstrate the feasibility and practicality of applying smart materials for limited authority, active control on a helicopter rotor. Follow-on forward flight demonstrations are needed to quantify the expected significant improvements in vibrations, noise, and aerodynamic performance. Extensions of this technology are a prime candidate for on-blade flight control, i.e. elimination of the swashplate. This program was performed as part of DARPA's Smart Materials and Structures Demonstrations. Funding was provided by DARPA, The Boeing Company, NASA, and the U.S. Army. Additional cost share funds were provided by the University of Maryland, MIT, and UCLA.

Paper Details

Date Published: 29 July 2004
PDF: 11 pages
Proc. SPIE 5388, Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies, (29 July 2004); doi: 10.1117/12.562645
Show Author Affiliations
Friedrich K. Straub, Boeing Co. (United States)
Dennis K. Kennedy, Boeing Co. (United States)
Alan D. Stemple, Boeing Co. (United States)
V.R. Anand, Boeing Co. (United States)
Terry S. Birchette, Boeing Co. (United States)

Published in SPIE Proceedings Vol. 5388:
Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies
Eric H. Anderson, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?