Share Email Print

Proceedings Paper

Nanostructured diffractive optical elements on SiNX membrane for UV-visible regime applications
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Silicon nitride (SiNX) film is a commonly used material in silicon technology. In addition, it has excellent optical properties. It is transparent in both the UV and visible range, with a high refractive index of about 1.7~2. Owing to its superior mechanical and optical properties, we used a silicon nitride membrane as an optical phase element. We will fabricate nano-structured diffractive optical elements, such as wave-plate, polarizer, and polarized beam splitter on SiNXHY membrane by e-beam lithography for the UV-visible regime applications. The SiNXHY membranes were made from SiNXHY films deposited by an plasma enhanced chemical vapor deposition (PECVD) as an alternative method for low stress membrane fabrication used in UV-visible transmittance. The stress of silicon nitride film showed a change from compressive to tensile with increasing working pressure during film deposition. The UV-visible transmittance of the free standing membrane was measured, which showed that UV light is transparent at wavelength as short as 240nm. We will show the feasibility to fabricate nano-structured diffractive optical elements on the SiNXHY membrane combined with microoptoelectromechanical systems (MOEMS) technology for the application in the UV-visible regimes.

Paper Details

Date Published: 8 October 2004
PDF: 10 pages
Proc. SPIE 5515, Nanoengineering: Fabrication, Properties, Optics, and Devices, (8 October 2004); doi: 10.1117/12.559296
Show Author Affiliations
Chien Chieh Lee, National Central Univ. (Taiwan)
Chih Ming Wang, National Central Univ. (Taiwan)
Che Lung Xu, National Central Univ. (Taiwan)
Jing Yi Chen, National Central Univ. (Taiwan)
Jenq Yang Chang, National Central Univ. (Taiwan)
Yi Ming Liao, National Central Univ. (Taiwan)
Gou Chung Chi, National Central Univ. (Taiwan)

Published in SPIE Proceedings Vol. 5515:
Nanoengineering: Fabrication, Properties, Optics, and Devices
Elizabeth A. Dobisz; Louay A. Eldada, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?