Share Email Print

Proceedings Paper

Wavefront sensorless adaptive optics, modal wavefront sensing, and sphere packings
Author(s): Martin J. Booth
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We investigate the properties of a class of adaptive optics systems that do not employ a wave front sensor but rather optimise a photodetector signal by appropriate control of an adaptive element. Such wave front control methods have already been implemented in various applications. It is often convenient to represent a wave front aberration by the superposition of several aberration modes, for example, using the set of Zernike polynomials. In many practical situations the total aberration can be accurately represented by a small number of such modes. It is shown that the design of wave front sensor-less adaptive optics systems based upon Zernike modes is related to the mathematical problem of sphere packing. This involves the arrangement of spheres in multiple dimensions, where the coordinate for each dimension corresponds to a Zernike mode amplitude. This observation permits optimisation of the systems providing considerable increases in efficiency over schemes that take no account of the geometries involved. We combine this approach with modal wave front sensing to provide efficient, direct measurement of Zernike aberration modes.

Paper Details

Date Published: 12 October 2004
PDF: 9 pages
Proc. SPIE 5553, Advanced Wavefront Control: Methods, Devices, and Applications II, (12 October 2004);
Show Author Affiliations
Martin J. Booth, Univ. of Oxford (United Kingdom)

Published in SPIE Proceedings Vol. 5553:
Advanced Wavefront Control: Methods, Devices, and Applications II
John D. Gonglewski; Mark T. Gruneisen; Michael K. Giles, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?