Share Email Print

Proceedings Paper

A theory of magnetization reversal in nanowires
Author(s): Robert S. Maier
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Magnetization reversal in a ferromagnetic nanowire which is much narrower than the exchange length is believed to be accomplished through the thermally activated growth of a spatially localized nucleus, which initially occupies a small fraction of the total volume. To date, the most detailed theoretical treatments of reversal as a field-induced but noise-activated process have focused on the case of a very long ferromagnetic nanowire, i.e., a highly elongated cylindrical particle, and have yielded a reversal rate per unit length, due to an underlying assumption that the nucleus may form anywhere along the wire. But in a bounded-length (though long) cylindrical particle with flat ends, it is energetically favored for nucleation to begin at either end. We indicate how to compute analytically the energy of the critical nucleus associated with either end, i.e., the activation barrier to magnetization reversal, which governs the reversal rate in the low-temperature (Kramers) limit. Our treatment employs elliptic functions, and is partly analytic rather than numerical. We also comment on the Kramers prefactor, which for this reversal pathway does not scale linearly as the particle length increases, and tends to a constant in the low-temperature limit.

Paper Details

Date Published: 25 May 2004
PDF: 10 pages
Proc. SPIE 5471, Noise in Complex Systems and Stochastic Dynamics II, (25 May 2004); doi: 10.1117/12.553199
Show Author Affiliations
Robert S. Maier, Univ. of Arizona (United States)

Published in SPIE Proceedings Vol. 5471:
Noise in Complex Systems and Stochastic Dynamics II
Zoltan Gingl, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?