Share Email Print

Proceedings Paper

ATST enclosure: seeing performance, thermal modeling, and error budgets
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The enclosure for the Advanced Technology Solar Telescope (ATST) is both a wind shield and a source of seeing. Its design must minimize self-induced seeing while remaining within cost constraints and balancing with other error budget items. We report the methods used to quantify seeing performance, including thermal modeling, seeing estimation, and systems engineering error budgets. Thermal modeling is performed using a commercial software package that applies measured site weather data to a CAD-generated enclosure model. Seeing estimation is performed using a simple aerodynamic treatment. The results, along with measured site wind and temperature distributions, are combined into a "bottom-up" performance prediction using Monte Carlo techniques.

Paper Details

Date Published: 16 September 2004
PDF: 11 pages
Proc. SPIE 5497, Modeling and Systems Engineering for Astronomy, (16 September 2004); doi: 10.1117/12.551530
Show Author Affiliations
Nathan E. Dalrymple, Air Force Research Lab. (United States)
Jacobus M. Oschmann Jr., National Solar Observatory (United States)
Robert P. Hubbard, National Solar Observatory (United States)

Published in SPIE Proceedings Vol. 5497:
Modeling and Systems Engineering for Astronomy
Simon C. Craig; Martin J. Cullum, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?