Share Email Print

Proceedings Paper

Simulations of (MC)AO for a 100-m telescope
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this paper, we summarize the analysis made on various Adaptive Optics (AO) modes (including Shack-Hartmann (SH) and Pyramid Wavefront Sensors (PWS)) for the OverWhelmingly Large telescope (OWL). We will show some early results of the performance to be expected with a first generation AO system, working in the infrared. Several telescope diameters were considered to see the variations as a function of telescope diameter. This is also compatible with the concept of "grow a telescope" where the telescope diameter of OWL grows from 60m to 100m as a function of time. In a first phase, to simplify the problem, the effects of the central obstruction were neglected. However, for the Shack-Hartmann (SH) simulations, additional simulations were carried out with a simulated OWL pupil, including segmentation errors. We show some early results for a ground-layer correction system, working with three natural guide stars (NGSs) and a single deformable mirror (DM). An MCAO system based on 2 DMs, 3 NGSs is also investigated. For the last two systems, our results are found to be in very good agreement with Cibola, an analytical AO modeling tool. We show that some outer scale of turbulence effects improve slightly the correction quality when going from a telescope diameter of 10m to 100m.

Paper Details

Date Published: 25 October 2004
PDF: 12 pages
Proc. SPIE 5490, Advancements in Adaptive Optics, (25 October 2004); doi: 10.1117/12.551079
Show Author Affiliations
Miska Le Louarn, European Southern Observatory (Germany)
Christophe Verinaud, European Southern Observatory (Germany)
Natalia Yaitskova, European Southern Observatory (Germany)
Visa Korkiakoski, European Southern Observatory (Germany)
Enrico Fedrigo, European Southern Observatory (Germany)
Norbert N. Hubin, European Southern Observatory (Germany)

Published in SPIE Proceedings Vol. 5490:
Advancements in Adaptive Optics
Domenico Bonaccini Calia; Brent L. Ellerbroek; Roberto Ragazzoni, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?