Share Email Print

Proceedings Paper

Subnanometer level model validation of the SIM interferometer
Author(s): Robert P. Korechoff; Daniel J. Hoppe; Xu Wang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The Space Interferometer Mission (SIM) flight instrument will not undergo a full performance, end-to-end system test on the ground due to a number of constraints. Thus, analysis and physics-based models will play a significant role in providing confidence that SIM will meet its science goals on orbit. The various models themselves are validated against the experimental results of severl "picometer" testbeds. In this paper we describe a set of models that are used to predict the magnitude and functional form of a class of field-dependent systematic errors for the science and guide interferometers. This set of models is validated by comparing predictions with the experimental results obtained from the MicroArcsecond Metrology (MAM) testbed and the Diffraction testbed (DTB). The metric for validation is provided by the SIM astrometric error budget.

Paper Details

Date Published: 20 October 2004
PDF: 12 pages
Proc. SPIE 5491, New Frontiers in Stellar Interferometry, (20 October 2004); doi: 10.1117/12.550153
Show Author Affiliations
Robert P. Korechoff, Jet Propulsion Lab. (United States)
Daniel J. Hoppe, Jet Propulsion Lab. (United States)
Xu Wang, Jet Propulsion Lab. (United States)

Published in SPIE Proceedings Vol. 5491:
New Frontiers in Stellar Interferometry
Wesley A. Traub, Editor(s)

© SPIE. Terms of Use
Back to Top