Share Email Print

Proceedings Paper

Solar multiconjugate adaptive optics at the Dunn Solar Telescope: preliminary results
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We report here the preliminary results obtained with the multi-conjugate adaptive optics (MCAO) system at the Dunn Solar Telescope (DST/NSO MCAO) and the optical setup and performances are presented in more details in Moretto et al. in this proceeding. This system relies on the tomography technique, in which three WFS are used, each of them coupled to extended images of the Sun’s granulation and/or sunspots, to retrieve a 3D measurement of the turbulent volume in order to command the two DMs. We used a 5x5 subaperture Shack-Hartmann with cross correlation applied on three selected guiding regions - 18" wide- within the 1.25' full FOV. We also report on the estimation of turbulence distribution and the future MCAO performances based on a separate tomographic wavefront sensing experiment using the Dunn Solar Telescope adaptive optics system. In addition, we obtained estimates of the turbulence distribution. The results from this article provides an important step forward for building a full solar multi-conjugate adaptive optics system for the Dunn Solar Telescope and in the long term for the future 4 meter ATST telescope.

Paper Details

Date Published: 25 October 2004
PDF: 8 pages
Proc. SPIE 5490, Advancements in Adaptive Optics, (25 October 2004); doi: 10.1117/12.548929
Show Author Affiliations
Maud Langlois, National Solar Observatory (United States)
Gil Moretto, National Solar Observatory (United States)
Kit Richards, National Solar Observatory (United States)
Steve Hegwer, National Solar Observatory (United States)
Thomas R. Rimmele, National Solar Observatory (United States)

Published in SPIE Proceedings Vol. 5490:
Advancements in Adaptive Optics
Domenico Bonaccini Calia; Brent L. Ellerbroek; Roberto Ragazzoni, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?