Share Email Print

Proceedings Paper

Noise-sustained oscillation and synchronization of excitable media with stirring
Author(s): Changsong Zhou; Jurgen Kurths; Zoltan Neufeld; Istvan Z. Kiss
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Constructive effects of noise have been well studied in spatially extended systems. In most of these studies, the media are static, reaction-diffusion type, and the constructive effects are a consequence of the interplay between local excitation due to noise perturbation and propagation of excitation due to diffusion. Many chemical or biological processes occur in a fluid environment with mixing. In this paper, we investigate the interplay among noise, excitability, diffusion and mixing in excitable media advected by a chaotic flow, in a 2D Fitz Hugh-Nagumo model described by a set of reaction-advection-diffusion equations. Without stirring, noise can only generate non-coherent excited patches of the static media. In the presence of stirring, we observe three dynamical and pattern formation regimes: (1) Non-coherent excitation, when mixing is not strong enough to achieve synchronization of independent excitations developed at different locations; (2) Coherent global excitation, when the noise-induced perturbation propagates by mixing and generates a synchronized excitation of the whole domain; and (3) Homogenization, when strong stirring dilutes quickly those noise-induced local excitations. In the presence of an external sub-threshold periodic forcing, the period of the noise-sustained oscillations can be locked by the forcing period with different ratios. Our results may be verified in experiments and find applications in population dynamics of oceanic ecological systems.

Paper Details

Date Published: 25 May 2004
PDF: 10 pages
Proc. SPIE 5471, Noise in Complex Systems and Stochastic Dynamics II, (25 May 2004); doi: 10.1117/12.546755
Show Author Affiliations
Changsong Zhou, Univ. Potsdam (Germany)
Jurgen Kurths, Univ. Potsdam (Germany)
Zoltan Neufeld, Los Alamos National Lab. (United States)
Istvan Z. Kiss, Univ. of Leeds (United Kingdom)

Published in SPIE Proceedings Vol. 5471:
Noise in Complex Systems and Stochastic Dynamics II
Zoltan Gingl, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?