Share Email Print

Proceedings Paper

Predicting image placement accuracy of x-ray masks
Author(s): Gerald A. Dicks; Roxann L. Engelstad; Edward G. Lovell; Brent Edward Boerger; Daniel J. Fleming; Karen H. Brown
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A new fabrication process flow is being developed for X-ray lithography masks to simplify the wafer bonding procedure while allowing for the use of a standard, non-distortive mount in the e-beam tool. A conventional flow includes a support ring that is anodically-bonded to the mask wafer prior to writing the pattern in the e-beam tool. The new flow includes a support ring that is bonded to the mask wafer at a “single point” after the pattern is written. Because mask membrane distortions due to fabrication, pattern transfer, and mounting give rise to image placement errors on the device wafer, this research focused on the impact the new process flow has on mask membrane distortions in comparison to those that result from a conventional process flow. The resulting simulations showed that distortions that lead to image placement errors decrease when employing the new fabrication process. The results also illustrate that mechanical modeling provides an invaluable tool for quantifying image placement errors, and, ultimately, optimizing the system parameters to successfully meet the stringent error budgets at the 45-nm node (and below).

Paper Details

Date Published: 20 May 2004
PDF: 9 pages
Proc. SPIE 5374, Emerging Lithographic Technologies VIII, (20 May 2004); doi: 10.1117/12.546200
Show Author Affiliations
Gerald A. Dicks, Univ. of Wisconsin/Madison (United States)
Roxann L. Engelstad, Univ. of Wisconsin/Madison (United States)
Edward G. Lovell, Univ. of Wisconsin/Madison (United States)
Brent Edward Boerger, JMAR Technologies, Inc. (United States)
Daniel J. Fleming, JMAR Technologies, Inc. (United States)
Karen H. Brown, Idea Industries (United States)

Published in SPIE Proceedings Vol. 5374:
Emerging Lithographic Technologies VIII
R. Scott Mackay, Editor(s)

© SPIE. Terms of Use
Back to Top