Share Email Print

Proceedings Paper

Fast calculation of the Voight profile absorption line of gas for the atmospheric transmission function determination
Author(s): Eleonora A. Chayanova; A. I. Ivanovsky; Yury A. Borisov; V. N. Glazkov; T. V. Bankova
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A fast method is offered for calculation of Voight spectral absorption line contour. A line profile is represented by a sum of terms of an absolutely converging series, containing undimensioned parameters a and b, connected with a property of the absorbing molecule, atmospheric temperature and pressure. The value b changes in a large limit from zero at the line center to 1000 and more at far wing of the line. The value a, describing a ratio of the Lorenz and Doppler effects, changes from a value ~5 near the surface of the Earth to 10-5 in the stratosphere. Twenty terms of series ensure the high accuracy of the approximation for values b ranging from 0 to 5. The deviation from accurate Voight contour formula is less than 4*10-4 or 0.04%. However, a large b value implies increase the number of terms, and the computing time increases accordingly. Numerical integration of Voight formula by Gauss-Hermite quadrature is simple, fast and accurate calculation for a value b> 5. In this case the deviation from accurate Voight formula is less than 2*10-5 or 0.002%. Using the proposed approximation of the Voight profile line, the atmospheric transmission function was computed for the path Sun- satellite represented as a net of tangent heights relative to the Earth’s surface up to 100 km with 1 km step. The computation method involves 29 spectral channels of the water absorption region (933-959 nm) and 14 channels of the molecular oxygen absorption region (758-771 nm). The computations were performed for certain profiles of H2O, O2, temperature and pressure. The computations results were compared with experimental data.

Paper Details

Date Published: 12 January 2004
PDF: 9 pages
Proc. SPIE 5311, 14th Symposium on High-Resolution Molecular Spectroscopy, (12 January 2004); doi: 10.1117/12.545721
Show Author Affiliations
Eleonora A. Chayanova, Central Aerological Observatory (Russia)
A. I. Ivanovsky, Central Aerological Observatory (Russia)
Yury A. Borisov, Central Aerological Observatory (Russia)
V. N. Glazkov, Central Aerological Observatory (Russia)
T. V. Bankova, Central Aerological Observatory (Russia)

Published in SPIE Proceedings Vol. 5311:
14th Symposium on High-Resolution Molecular Spectroscopy
Leonid N. Sinitsa; Semen N. Mikhailenko, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?