Share Email Print

Proceedings Paper

Pushing KrF photolithography limit for 3D integrated circuit
Author(s): Yung-Tin Chen; Steve Radigan
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this paper, a study of shrinking a 3-D memory circuit beyond 0.26mm pitch by currently available KrF photolithography tool is described. Line/space patterns and post structures are included in this study due to the architecture of 3-D memory. Resolution capability of various OAI techniques such as annular, QUASAR, and dipole illumination are analyzed by simulation and wafer printing images. Both attenuated and alternating type phase shifting masks are used to test the resolution limit of various memory structures. A new method of making “alternating-type” phase shifting mask for post pattern is presented in this study. This new phase shifting mask provides a great improvement for resolving small post structures, which have limited process window due to 2-D optical interference effect. This study presents an application of KrF RET to 3-D memory circuit by smart circuit design.

Paper Details

Date Published: 28 May 2004
PDF: 8 pages
Proc. SPIE 5377, Optical Microlithography XVII, (28 May 2004); doi: 10.1117/12.544386
Show Author Affiliations
Yung-Tin Chen, Matrix Semiconductor (United States)
Steve Radigan, Matrix Semiconductor (United States)

Published in SPIE Proceedings Vol. 5377:
Optical Microlithography XVII
Bruce W. Smith, Editor(s)

© SPIE. Terms of Use
Back to Top