
Proceedings Paper
Fast evaluation of photomask near-fields in subwavelength 193-nm lithographyFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
Sub-wavelength lithography places a serious limitation on the
conventional "thin mask" approximation of the field immediately
behind the patterned mask. This approximation fails to account for
the increasingly important topographical effects of the mask or
"thick mask" effects. This approximation of the photomask
near-fields results from the direct application of Kirchhoff
Boundary Conditions, which multiply the incident field by a binary
transmission function of the patterned mask. Polarization
dependent edge diffraction effects, as well as phase and amplitude
transmission errors that arise from the vector nature of light,
and the finite thickness of the substrate and chrome layers,
produce significant errors in the scalar simulations of the
lithographic image. Based on the comparison of aerial images at the wafer plane produced by both rigorous electromagnetic solutions of the
field on the mask and their "thin mask" counterparts, a more accurate model is proposed that consists of a fixed-width, locally-determined boundary layer of imaginary transmission coefficient added to every edge of the initial "thin mask" approximation. The accuracy of the resultant Boundary Layer model has been exhaustively tested against rigorously simulated aerial images of isolated as well as periodic features of very different profiles and dimensions. The conclusion being that this simple approach is capable of modeling "thick mask" effects at both 248nm and 193nm wavelength and high NA lithography. This greatly improves the accuracy of aerial image computation in
photolithography simulations at a reasonable computational cost.
Paper Details
Date Published: 28 May 2004
PDF: 8 pages
Proc. SPIE 5377, Optical Microlithography XVII, (28 May 2004); doi: 10.1117/12.544236
Published in SPIE Proceedings Vol. 5377:
Optical Microlithography XVII
Bruce W. Smith, Editor(s)
PDF: 8 pages
Proc. SPIE 5377, Optical Microlithography XVII, (28 May 2004); doi: 10.1117/12.544236
Show Author Affiliations
Jaione Tirapu-Azpiroz, Univ. of California/Los Angeles (United States)
Eli Yablonovitch, Univ. of California/Los Angeles (United States)
Published in SPIE Proceedings Vol. 5377:
Optical Microlithography XVII
Bruce W. Smith, Editor(s)
© SPIE. Terms of Use
