Share Email Print

Proceedings Paper

Hyperspectral change detection and supervised matched filtering based on covariance equalization
Author(s): Alan P. Schaum; Alan Stocker
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

For hyperspectral remote sensing, the physics-based transformation connecting two multivariate sets of spectral radiance data of the same scene collected at two disparate times is approximately linear (plus an offset). Generally, the covariance structures of two such data sets provide partial information about any linear transformation connecting them. The remaining unknown degrees of freedom of the transformation must be deduced from other statistics, or from a knowledge of the underlying phenomenology. Among all the possible transformations consistent with measured pairs of hyperspectral covariance structures, a particularly simple and accurate one has been found. This "rotation free" flavor of "Covariance Equalization" (CE) has led to a simplified signal processing architecture that has been implemented in a real time VNIR hyperspectral target detection system. This paper describes that architecture, presents detection performance results, and introduces a new algorithm for long-interval change detection, Matched Change Detection.

Paper Details

Date Published: 12 August 2004
PDF: 14 pages
Proc. SPIE 5425, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, (12 August 2004); doi: 10.1117/12.544026
Show Author Affiliations
Alan P. Schaum, Naval Research Lab. (United States)
Alan Stocker, Space Computer Corp. (United States)

Published in SPIE Proceedings Vol. 5425:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?