Share Email Print

Proceedings Paper

Nucleation and crystalization studies: a vibrational-spectroscopy investigation of 2,4,6-TNT
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

2,4,6-Trinitrotoluene, commonly known as TNT, is an explosive used in military shells, bombs, landmines, grenades, demolition operations, and underwater blasting. It is produced in the United States only at military facilities. Accidental releases of TNT and residues in battle fields have contaminated groundwater, soil, and sand at numerous sites around the world. TNT exists in two physical forms at room temperature: droplets and crystals. The spectroscopic information conveyed depends on its physical form and the substrate on which it is deposited. Vibrational spectroscopy is a powerful tool that can be used to characterize TNT in its diverse forms. Crystallization of TNT from different solvents (acetonitrile, methanol, and water) was carried out to subsequently measure the vibrational spectra. The important nitroaromatic compound exhibits a series of unique characteristic bands that allow its detection and spectroscopic characterization. The spectroscopic signatures of neat TNT samples were determined with Raman Microspectroscopy and Fourier Transform Infrared (FTIR) Microscopy. The Raman spectra of neat TNT are dominated by strong bands at about 1365 and 2956 cm-1. The intensity and even the presence of these bands are found to be remarkably dependent on TNT form and source.

Paper Details

Date Published: 21 September 2004
PDF: 12 pages
Proc. SPIE 5415, Detection and Remediation Technologies for Mines and Minelike Targets IX, (21 September 2004); doi: 10.1117/12.543302
Show Author Affiliations
Cesar A. Manrique-Bastidas, Univ. de Puerto Rico/Mayaguez (United States)
Jairo Castillo-Chara, Univ. de Puerto Rico/Mayaguez (United States)
Nairmen Mina, Univ. de Puerto Rico/Mayaguez (United States)
Miguel E. Castro, Univ. de Puerto Rico/Mayaguez (United States)
Samuel P. Hernandez-Rivera, Univ. de Puerto Rico/Mayaguez (United States)

Published in SPIE Proceedings Vol. 5415:
Detection and Remediation Technologies for Mines and Minelike Targets IX
Russell S. Harmon; J. Thomas Broach; John H. Holloway Jr., Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?