Share Email Print

Proceedings Paper

Boosting a wavelet packet transform based landmine detector
Author(s): Yijun Sun; Jian Li
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We consider landmine detection using forward-looking ground penetrating radar (FLGPR), which is quite challenging due to the weak signal returns of landmines. The two main challenging tasks include extracting intricate structures of the target signals from the radar imagery and adapting the classifier to the surrounding environment through learning. Through the time-frequency analysis, we find that the most discriminant information is time-frequency localized. This observation motivates us to use the wavelet packet transform to sparsely represent the signals with the discriminant information encoded into several bases. Then the sequential floating forward selection method is used to extract these components and thereby a neural network classifier is designed. To further improve the classification performance, the AdaBoost algorithm is used. We modify the original AdaBoost algorithm to integrate the feature selection process into each iteration. Experimental results based on measured FLGPR data are presented, showing that with the proposed classifier, a significant improvement on both the training and the testing performances can be achieved.

Paper Details

Date Published: 21 September 2004
PDF: 10 pages
Proc. SPIE 5415, Detection and Remediation Technologies for Mines and Minelike Targets IX, (21 September 2004); doi: 10.1117/12.541797
Show Author Affiliations
Yijun Sun, Univ. of Florida (United States)
Jian Li, Univ. of Florida (United States)

Published in SPIE Proceedings Vol. 5415:
Detection and Remediation Technologies for Mines and Minelike Targets IX
Russell S. Harmon; J. Thomas Broach; John H. Holloway Jr., Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?