Share Email Print

Proceedings Paper

Fabrication of volume grating induced in silica glass by femtosecond laser
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A self-trapped filament of ultrashort laser pulses can induce a several-hundred-micron-long region of refractive-index change in silica glass. The maximum refractive-index change and the diameter of refractive-index change are approximately 0.01 and 2 μm, respectively. The filament is 10 - 500 μm long along the pulse propagation axis and its length depends mainly on the numerical aperture of the focusing lens. In this paper, we present the fabrication experiment of volume gratings induced in silica glass by a self-trapped filament of ultrashort pulses. When the 150-μm-long filament was translated perpendicular to the optical axis by 300 μm, a layer of refractive-index change with the thickness of 2 μm was induced. We stacked the layers with a period of several microns and fabricated volume gratings. We entered a He-Ne laser beam at the wavelength of 632.8 nm to the grating with the Bragg angle to measure the diffraction efficiency. The maximum diffraction efficiency was 74.8% with the grating that had the period of 3 μm, and the thickness of 150 μm.

Paper Details

Date Published: 18 November 2003
PDF: 4 pages
Proc. SPIE 5063, Fourth International Symposium on Laser Precision Microfabrication, (18 November 2003); doi: 10.1117/12.540762
Show Author Affiliations
Kazuhiro Yamada, Osaka Univ. (Japan)
Wataru Watanabe, Osaka Univ. (Japan)
Kenji Kintaka, National Institute of Advanced Industrial Science and Technology (AIST) (Japan)
Junji Nishii, National Institute of Advanced Industrial Science and Technology (AIST) (Japan)
Kazuyoshi Itoh, Osaka Univ. (Japan)

Published in SPIE Proceedings Vol. 5063:
Fourth International Symposium on Laser Precision Microfabrication
Isamu Miyamoto; Andreas Ostendorf; Koji Sugioka; Henry Helvajian, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?