Share Email Print

Proceedings Paper

Anchor person shot detection for news video indexing based on graph-theoretical clustering and fuzzy if-then rules
Author(s): Xinbo Gao; Qi Li; Jie Li
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Anchorperson shot detection is of significance for video shot semantic parsing and indexing clues extraction in content-based news video indexing and retrieval system. This paper presents a model-free anchorperson shot detection scheme based on the graph-theoretical clustering and fuzzy interference. First, a news video is segmented into video shots with any an effective video syntactic parsing algorithm. For each shot, one frame is extracted from the frame sequence as a representative key frame. Then the graph-theoretical clustering algorithm is performed on the key frames to identify the anchorperson frames. The anchorperson frames are further refined based on face detection and fuzzy interference with if-then rules. The proposed scheme achieves a precision of 98.40% and a recall of over 97.69% in the anchorperson shot detection experiment.

Paper Details

Date Published: 25 September 2003
PDF: 4 pages
Proc. SPIE 5286, Third International Symposium on Multispectral Image Processing and Pattern Recognition, (25 September 2003); doi: 10.1117/12.539898
Show Author Affiliations
Xinbo Gao, Xidian Univ. (China)
Qi Li, Xidian Univ. (China)
Jie Li, Xidian Univ. (China)

Published in SPIE Proceedings Vol. 5286:
Third International Symposium on Multispectral Image Processing and Pattern Recognition
Hanqing Lu; Tianxu Zhang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?