Share Email Print

Proceedings Paper

Vibration isolator design via energy confinement through eigenvector assignment and piezoelectric networking
Author(s): Tian-Yau Wu; Kon-Well Wang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The objective of this research is to investigate the feasibility of utilizing eigenvector assignment and piezoelectric networking for enhancing vibration isolator design through energy confinement. For a classical periodic isolator structure, the material discontinuity creates stop bands that could suppress the wave propagation of external excitation in a particular frequency range. While effective, such method can not always create wide enough stop bands such that all the disturbance frequencies are covered. In this study, the eigenvector assignment technique and piezoelectric networks are utilized to reduce the transmissibility of the isolator modes near the boundary of the stop bands, and therefore widen the effective frequency range and enhance the performance of the isolator. The eigenvector assignment principle is to alter the mode shapes of the system so that the modal components have smaller amplitude in concerned coordinates than in other parts of the system. By applying the eigenvector assignment method on the spatially tailored periodic isolator structure, the attenuated end (the end of the isolator designed to have small vibration) response amplitude at resonant frequencies near the stop band can be reduced, which enhances the vibration isolation performance in the frequency range of interest. On the other hand, piezoelectric networks connecting to the isolator structure increase the degrees of freedom of the integrated system, and enlarge the design space for achievable eigenvectors. The right eigenvectors of this integrated system are selected such that the modal energy in the concerned area is minimized by using the Rayleigh Principle. The integrated system with assigned eigenvectors will re-distribute vibratory energy of the complete electromechanical system. Small vibration at the attenuated end of the isolator is achieved since the energy is confined in the circuitry and other parts of the isolator. Numerical simulations are performed to evaluate the effectiveness of the proposed method on vibration confinement for isolator designs. Frequency responses of the different generalized coordinates in the selected frequency range are illustrated. It is shown that with the piezoelectric networking and eigenvector assignment, the system energy is redistributed and confined in the unconcerned areas, which can greatly enhance the performance of the vibration isolation system.

Paper Details

Date Published: 29 July 2004
PDF: 15 pages
Proc. SPIE 5386, Smart Structures and Materials 2004: Damping and Isolation, (29 July 2004); doi: 10.1117/12.538625
Show Author Affiliations
Tian-Yau Wu, The Pennsylvania State Univ. (United States)
Kon-Well Wang, The Pennsylvania State Univ. (United States)

Published in SPIE Proceedings Vol. 5386:
Smart Structures and Materials 2004: Damping and Isolation
Kon-Well Wang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?