Share Email Print

Proceedings Paper

Modeling of microscale processes as a tool to speed development and enhance performance of microanalytical products
Author(s): Bernhard H. Weigl; Ron L. Bardell
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

With macroscopic chemical analysis devices, it is usually possible during the development phase to mount flow sensors, temperature probes, and optical detectors at various positions along the instrument pathway to experimentally determine the optimum operational parameters for the device. This approach usually fails for microdevices as standard sensors and probes are typically of the same scale as the microdevice. These relatively large sensors interfere so much with the experiments that any results generated do not represent the actual performance of the system. Fortunately, modeling of microscale processes provides a uniquely useful tool to develop microanalytical devices and optimize their operational parameters, since the chemical and physical processes in the microscale generally follow deterministic physical laws that can be accurately represented in mathematical models. We will discuss some of the methods used to model and design microanalytical assays based on these principles, as well as several ongoing development projects that MicroPlumbers is currently involved in (including a clinical microsensor, a microvolume blood collection device, and a novel clinical assay), and show how modeling and rational design is used during the development processes and yield devices with optimized performance.

Paper Details

Date Published: 23 December 2003
PDF: 10 pages
Proc. SPIE 5345, Microfluidics, BioMEMS, and Medical Microsystems II, (23 December 2003); doi: 10.1117/12.538592
Show Author Affiliations
Bernhard H. Weigl, MicroPlumbers Microsciences LLC (United States)
Ron L. Bardell, MicroPlumbers Microsciences LLC (United States)

Published in SPIE Proceedings Vol. 5345:
Microfluidics, BioMEMS, and Medical Microsystems II
Peter Woias; Ian Papautsky, Editor(s)

© SPIE. Terms of Use
Back to Top