Share Email Print

Proceedings Paper

Approaching the numerical aperture of water immersion lithography at 193-nm
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

As immersion nanolithography gains acceptance for next generation device applications, experimental data becomes increasingly important. The behavior of resist materials, fluids, coatings, sources, and optical components in the presence of a water immersion media presents conditions unique compared to convention “dry” lithography. Several groups have initiated fundamental studies into the imaging, fluids, contamination, and integration issues involved with water immersion lithography at 193nm. This paper will present the status and results of the next stage of the development efforts carried out at RIT. The status of two systems are presented; a small field projection microstepper utilizing a 1.05 catadioptric immersion objective lens and a 0.50 to 1.26NA interferometric immersion exposure system based on a compact Talbot prism lens design. Results of the fundamental resolution limits of resist materials and of imaging optics are presented. Additionally, an exploration into the benefits of increasing the refractive index of water is addressed through the use of sulfate and phosphate additives. The potential of KrF, 248nm immersion lithography is also presented with experimental resist imaging results.

Paper Details

Date Published: 28 May 2004
PDF: 12 pages
Proc. SPIE 5377, Optical Microlithography XVII, (28 May 2004); doi: 10.1117/12.537262
Show Author Affiliations
Bruce W. Smith, Rochester Institute of Technology (United States)
Anatoly Bourov, Rochester Institute of Technology (United States)
Yongfa Fan, Rochester Institute of Technology (United States)
Lena V. Zavyalova, Rochester Institute of Technology (United States)
Neal Vincent Lafferty, Rochester Institute of Technology (United States)
Frank Charles Cropanese, Rochester Institute of Technology (United States)

Published in SPIE Proceedings Vol. 5377:
Optical Microlithography XVII
Bruce W. Smith, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?