Share Email Print

Proceedings Paper

Interferometric-probe aberration monitor performance in the production environment
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The performance of pattern and probe-based aberration monitors in the production environment, designed to measure individual Zernike aberration terms in 248nm wavelength high-NA (0.80) exposure tools is investigated via printed resist images. The results demonstrate the measurement operation of these monitors compared to their performance as designed through simulation, tightening the measurement accuracy of the focus monitor to 17nm or better than 1/10 of the Rayleigh depth of focus. The data shows a characteristic 50nm variation in focus across the field of the exposure tool. A comprehensive electric-field vector addition model of target operation is presented and shows how the center of the defocus target suffers from a lack of orthogonality to the normal proximity effect spillover. The target designed to detect coma aberration was investigated in-depth, but it continues to print in an unexpected manner, likely due to the electromagnetic performance of the mask and high-NA vector imaging effects. Finally, the target designed to measure spherical aberration was examined, but no noticeable spherical aberration signature/response was detected.

Paper Details

Date Published: 28 May 2004
PDF: 12 pages
Proc. SPIE 5377, Optical Microlithography XVII, (28 May 2004); doi: 10.1117/12.536596
Show Author Affiliations
Garth C. Robins, Univ. of California/Berkeley (United States)
Andrew R. Neureuther, Univ. of California/Berkeley (United States)
Mircea Dusa, ASML (United States)
Jongwook Kye, Advanced Micro Devices, Inc. (United States)

Published in SPIE Proceedings Vol. 5377:
Optical Microlithography XVII
Bruce W. Smith, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?