Share Email Print
cover

Proceedings Paper

Removal of intensity bias in magnitude spin-echo MRI images by nonlinear diffusion filtering
Author(s): Alexei A. Samsonov; Chris R. Johnson
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

MRI data analysis is routinely done on the magnitude part of complex images. While both real and imaginary image channels contain Gaussian noise, magnitude MRI data are characterized by Rice distribution. However, conventional filtering methods often assume image noise to be zero mean and Gaussian distributed. Estimation of an underlying image using magnitude data produces biased result. The bias may lead to significant image errors, especially in areas of low signal-to-noise ratio (SNR). The incorporation of the Rice PDF into a noise filtering procedure can significantly complicate the method both algorithmically and computationally. In this paper, we demonstrate that inherent image phase smoothness of spin-echo MRI images could be utilized for separate filtering of real and imaginary complex image channels to achieve unbiased image denoising. The concept is demonstrated with a novel nonlinear diffusion filtering scheme developed for complex image filtering. In our proposed method, the separate diffusion processes are coupled through combined diffusion coefficients determined from the image magnitude. The new method has been validated with simulated and real MRI data. The new method has provided efficient denoising and bias removal in conventional and black-blood angiography MRI images obtained using fast spin echo acquisition protocols.

Paper Details

Date Published: 12 May 2004
PDF: 10 pages
Proc. SPIE 5370, Medical Imaging 2004: Image Processing, (12 May 2004); doi: 10.1117/12.535899
Show Author Affiliations
Alexei A. Samsonov, Univ. of Utah (United States)
Chris R. Johnson, Univ. of Utah (United States)


Published in SPIE Proceedings Vol. 5370:
Medical Imaging 2004: Image Processing
J. Michael Fitzpatrick; Milan Sonka, Editor(s)

© SPIE. Terms of Use
Back to Top