Share Email Print

Proceedings Paper

Digital tomosynthesis rendering of joint margins for arthritis assessment
Author(s): Jeffrey W. Duryea; Gesa Neumann; Hiroshi Yoshioka; James T. Dobbins III
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

PURPOSE: Rheumatoid arthritis (RA) of the hand is a significant healthcare problem. Techniques to accurately quantity the structural changes from RA are crucial for the development and prescription of therapies. Analysis of radiographic joint space width (JSW) is widely used and has demonstrated promise. However, radiography presents a 2D view of the joint. In this study we performed tomosynthesis reconstructions of proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints to measure the 3D joint structure. METHODS: We performed a reader study using simulated radiographs of 12 MCP and 12 PIP joints from skeletal specimens imaged with micro-CT. The tomosynthesis technique provided images of reconstructed planes with 0.75 mm spacing, which were presented to 2 readers with a computer tool. The readers were instructed to delineate the joint surfaces on tomosynthetic slices where they could visualize the margins. We performed a quantitative analysis of 5 slices surrounding the central portion of each joint. Reader-determined JSW was compared to a gold standard. As a figure of merit we calculated the average root-mean square deviation (RMSD). RESULTS: RMSD was 0.22 mm for both joints. For the individual joints, RMSD was 0.18 mm (MCP), and 0.26 mm (PIP). The reduced performance for the smaller PIP joints suggests that a slice spacing less than 0.75 mm may be more appropriate. CONCLUSIONS: We have demonstrated the capability of limited 3D rendering of joint surfaces using digital tomosynthesis. This technique promises to provide an improved method to visualize the structural changes of RA.

Paper Details

Date Published: 6 May 2004
PDF: 7 pages
Proc. SPIE 5368, Medical Imaging 2004: Physics of Medical Imaging, (6 May 2004); doi: 10.1117/12.535850
Show Author Affiliations
Jeffrey W. Duryea, Brigham and Women's Hospital (United States)
Gesa Neumann, Brigham and Women's Hospital (United States)
Hiroshi Yoshioka, Brigham and Women's Hospital (United States)
James T. Dobbins III, Duke Univ. Medical School (United States)

Published in SPIE Proceedings Vol. 5368:
Medical Imaging 2004: Physics of Medical Imaging
Martin J. Yaffe; Michael J. Flynn, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?