Share Email Print

Proceedings Paper

Classification of microscopic images of breast tissue
Author(s): Lucia Ballerini; Lennart Franzen
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Breast cancer is the most common form of cancer among women. The diagnosis is usually performed by the pathologist, that subjectively evaluates tissue samples. The aim of our research is to develop techniques for the automatic classification of cancerous tissue, by analyzing histological samples of intact tissue taken with a biopsy. In our study, we considered 200 images presenting four different conditions: normal tissue, fibroadenosis, ductal cancer and lobular cancer. Methods to extract features have been investigated and described. One method is based on granulometries, which are size-shape descriptors widely used in mathematical morphology. Applications of granulometries lead to distribution functions whose moments are used as features. A second method is based on fractal geometry, that seems very suitable to quantify biological structures. The fractal dimension of binary images has been computed using the euclidean distance mapping. Image classification has then been performed using the extracted features as input of a back-propagation neural network. A new method that combines genetic algorithms and morphological filters has been also investigated. In this case, the classification is based on a correlation measure. Very encouraging results have been obtained with pilot experiments using a small subset of images as training set. Experimental results indicate the effectiveness of the proposed methods. Cancerous tissue was correctly classified in 92.5% of the cases.

Paper Details

Date Published: 12 May 2004
PDF: 12 pages
Proc. SPIE 5370, Medical Imaging 2004: Image Processing, (12 May 2004); doi: 10.1117/12.535670
Show Author Affiliations
Lucia Ballerini, Orebro Univ. (Sweden)
Lennart Franzen, Orebro Univ. Hospital (Sweden)

Published in SPIE Proceedings Vol. 5370:
Medical Imaging 2004: Image Processing
J. Michael Fitzpatrick; Milan Sonka, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?