Share Email Print

Proceedings Paper

Computer-aided lung nodule detection and assessment by using a hybrid PET/CT scanner
Author(s): Juan Franquiz; Sulohita Vaddadi; George Soler
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this study we present an automatic algorithm for the detection and functional assessment of lung nodules on three-dimensional slices derived from a hybrid PET/CT scanner. In addition to differentiate malignant from benign lesions, the algorithm was mainly designed for assessing the response of lung cancer to therapy. The automated algorithm involves three major steps. First, the lung region is segmented from low resolution multislice CT images. Once the lung is segmented on CT images, a search of seed pixels with maximum activity of 18FDG is undertaken into the lung regions of the electronically registered PET images. A 3D growing algorithm identified the lesion pixels around the maximum 18FDG activity seed pixels. In the third step, the total activity (Bq), concentration (Bq/ml), metabolically active volume (ml) and standard uptake values (SUV) were calculated for lesions on PET images. A threshold and filtering method was applied to high resolution CT scans to determine the CT volume of these lesions identified on PET images. All PET images were corrected for attenuation and partial volume effect and cross calibrated with a standard activity measured in a dose calibrator. Studies were performed using a hybrid PET/CT Discovery LS (GE Medical Systems). The feasibility and robustness of the automatic algorithm was demonstrated in studies with a lung-chest phantom and by retrospective analysis of clinical studies.

Paper Details

Date Published: 30 April 2004
PDF: 8 pages
Proc. SPIE 5369, Medical Imaging 2004: Physiology, Function, and Structure from Medical Images, (30 April 2004);
Show Author Affiliations
Juan Franquiz, Florida International Univ. (United States)
Sulohita Vaddadi, Florida International Univ. (United States)
George Soler, Florida International Univ. (United States)

Published in SPIE Proceedings Vol. 5369:
Medical Imaging 2004: Physiology, Function, and Structure from Medical Images
Amir A. Amini; Armando Manduca, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?