
Proceedings Paper
Myocardial kinematics based on tagged MRI from volumetric NURBS modelsFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
We present current research in which left ventricular deformation is estimated from tagged cardiac magnetic resonance imaging using volumetric deformable models constructed from nonuniform rational B-splines (NURBS). From a set of short and long axis images at end-diastole, the initial NURBS model is constructed by fitting two surfaces with the same parameterization to the set of epicardial and endocardial contours from which a volumetric model is created. Using normal displacements of the three sets of orthogonal tag planes as well as displacements of both tag line and contour/tag line intersection points, one can solve for the optimal homogeneous coordinates, in a least squares sense, of the control points of the NURBS model at a later time point using quadratic programming. After fitting to all time points of data, lofting the NURBS model at each time point creates a comprehensive 4-D NURBS model. From this model, we can extract 3-D myocardial displacement fields and corresponding strain maps, which are local measures of non-rigid deformation.
Paper Details
Date Published: 30 April 2004
PDF: 12 pages
Proc. SPIE 5369, Medical Imaging 2004: Physiology, Function, and Structure from Medical Images, (30 April 2004); doi: 10.1117/12.533498
Published in SPIE Proceedings Vol. 5369:
Medical Imaging 2004: Physiology, Function, and Structure from Medical Images
Amir A. Amini; Armando Manduca, Editor(s)
PDF: 12 pages
Proc. SPIE 5369, Medical Imaging 2004: Physiology, Function, and Structure from Medical Images, (30 April 2004); doi: 10.1117/12.533498
Show Author Affiliations
Nicholas J. Tustison, Washington Univ. School of Medicine (United States)
Amir A. Amini, Washington Univ. School of Medicine (United States)
Published in SPIE Proceedings Vol. 5369:
Medical Imaging 2004: Physiology, Function, and Structure from Medical Images
Amir A. Amini; Armando Manduca, Editor(s)
© SPIE. Terms of Use
