Share Email Print

Proceedings Paper

Novel polarization interference filters for wide spectral tuning of an optical null
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Novel tunable polarization interference filters (PIF) employing active liquid crystal devices are presented, and the principles of operation are described. Filter designs are presented based on a requirement for tunable nulls in the visible and near infrared spectral regions, of high optical density, for protection from intense electromagnetic radiation outside of the spectral range of interest which can saturate an imaging or sensor system. Two types of PIFs are presented with their modeled results and device performances. Analog filters in a generalized Lyot-Ohmann geometry are presented which are capable of tuning an optical null through 260 nm, by employing a single active device per filter stage. Binary filters are also presented which can switch between two complimentary and non-overlapping spectral states. Both types of filter can operate in a “normally on” state with a broadband “white light” throughput.

Paper Details

Date Published: 28 May 2004
PDF: 15 pages
Proc. SPIE 5289, Liquid Crystal Materials, Devices, and Applications X and Projection Displays X, (28 May 2004); doi: 10.1117/12.532868
Show Author Affiliations
Hugh J. Masterson, Boulder Nonlinear Systems, Inc. (United States)
Jay E. Stockley, Boulder Nonlinear Systems, Inc. (United States)

Published in SPIE Proceedings Vol. 5289:
Liquid Crystal Materials, Devices, and Applications X and Projection Displays X
Ming Hsien Wu; Liang-Chy Chien, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?