Share Email Print

Proceedings Paper • Open Access

Microphotonics systems: life beyond microelectronics

Paper Abstract

In 1959, the physicist Richard Feynman advised his colleagues that "there's plenty of room at the bottom." He envisioned a discipline devoted to manipulating smaller and smaller units of matter. "I am not afraid," he wrote, "to consider the final question as to whether, ultimately -- in the great future -- we can arrange the atoms the way we want, the way very atoms, all the way down." However, in early 1980's the doom and gloom of silicon MOS transistors was foreshadowed and scaling of the humble MOS transistors beyond 140 nm appeared as the impossible dream. Manipulation of material science, the emergence of low-K material and copper technology together with new techniques in lithography and processing have paved the way for revised predication that has foreshadowed the feature sizes in the order of 20 nm - 30 nm will occur somewhere between 2012 and 2016. Coupled with these developments, nanochemists have began to probe into matter and now Nanochemistry is beginning to shape the future of new materials and better understand the unique properties of assemblies of atoms and molecules on a scale that range between that of individual building blocks and the bulk material, thus confirming Feynman's vision. At this level quantum effects can be significant and innovative ways of carrying out chemical reactions become possible.

Paper Details

Date Published: 30 March 2004
PDF: 4 pages
Proc. SPIE 5274, Microelectronics: Design, Technology, and Packaging, (30 March 2004); doi: 10.1117/12.529781
Show Author Affiliations
Kamran Eshraghian, Edith Cowan Univ. (Australia)
Kamal Alameh, Edith Cowan Univ. (Australia)

Published in SPIE Proceedings Vol. 5274:
Microelectronics: Design, Technology, and Packaging
Derek Abbott; Kamran Eshraghian; Charles A. Musca; Dimitris Pavlidis; Neil Weste, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?