Share Email Print

Proceedings Paper

Nanoshells as an optical coherence tomography contrast agent
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Nanoshells are a layered dielectric core/metal shell composite nanostructure with an optical resonance geometrically tunable through the visible and near infrared. Due to their small size, ability to generate a strong backscattering signal, and potential for surface modification, they may be an ideal in vivo optical coherence tomography contrast agent. We performed a pilot study to assess their capabilities. Images of a cuvette filled with dilute nanoshells, 2 μm polystyrene microspheres, or a combination were obtained. When compared to microspheres, images of the nanoshells where much brighter and attenuation of the bottom cuvette interface less. Injection of micropheres into the tail vein of mice and hamsters caused a noticeable brightening of OCT images of the dorsal skin. These pilot studies indicate that nanoshells may be an excellent OCT contrast agent; work is continuing to determine optimum nanoshell parameters and applications.

Paper Details

Date Published: 1 July 2004
PDF: 8 pages
Proc. SPIE 5316, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VIII, (1 July 2004); doi: 10.1117/12.529235
Show Author Affiliations
Jennifer Kehlet Barton, Univ. of Arizona (United States)
Naomi J. Halas, Rice Univ. (United States)
Jennifer L. West, Rice Univ. (United States)
Rebekah A. Drezek, Rice Univ. (United States)

Published in SPIE Proceedings Vol. 5316:
Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VIII
Valery V. Tuchin; Joseph A. Izatt; James G. Fujimoto, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?