Share Email Print

Proceedings Paper

A high-capacity invertible data-hiding algorithm using a generalized reversible integer transform
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A high-capacity, data-hiding algorithm that lets the user restore the original host image after retrieving the hidden data is presented in this paper. The proposed algorithm can be used for watermarking valuable or sensitive images such as original art works or military and medical images. The proposed algorithm is based on a generalized, reversible, integer transform, which calculates the average and pair-wise differences between the elements of a vector extracted from the pixels of the image. The watermark is embedded into a set of carefully selected coefficients by replacing the least significant bit (LSB) of every selected coefficient by a watermark bit. Most of these coefficients are shifted left by one bit before replacing their LSBs. Several conditions are derived and used in selecting the appropriate coefficients to ensure that they remain identifiable after embedding. In addition, the selection of coefficients ensures that the embedding process does not cause any overflow or underflow when the inverse of the transform is computed. To ensure reversibility, the locations of the shifted coefficients and the original LSBs are embedded in the selected coefficients before embedding the desired payload. Simulation results of the algorithm and its performance are also presented and discussed in the paper.

Paper Details

Date Published: 22 June 2004
PDF: 11 pages
Proc. SPIE 5306, Security, Steganography, and Watermarking of Multimedia Contents VI, (22 June 2004); doi: 10.1117/12.527173
Show Author Affiliations
John Stach, Digimarc Corp. (United States)
Adnan M. Alattar, Digimarc Corp. (United States)

Published in SPIE Proceedings Vol. 5306:
Security, Steganography, and Watermarking of Multimedia Contents VI
Edward J. Delp III; Ping W. Wong, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?