Share Email Print
cover

Proceedings Paper

Quantum electro-mechanical systems (QEMS)
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We give a quantum description of a Quantum Electro-Mechanical System (QEMS) comprising a single quantum dot harmonically bound between two electrodes and facilitating a tunnelling current between them. An example of such a system is a fullerene molecule between two metal electrodes. The description is based on a quantum master equation for the density operator of the electronic and vibrational degrees of freedom and thus incorporates the dynamics of both diagonal (population) and off diagonal (coherence) terms. We derive coupled equations of motion for the electron occupation number of the dot and the vibrational degrees of freedom, including damping of the vibration and thermo-mechanical noise, and give a semiclassical description of the dynamics under a variety of bias conditions. This dynamical description is related to observable features of the system including the stationary conductance as a function of bias voltage.

Paper Details

Date Published: 2 April 2004
PDF: 11 pages
Proc. SPIE 5276, Device and Process Technologies for MEMS, Microelectronics, and Photonics III, (2 April 2004); doi: 10.1117/12.522241
Show Author Affiliations
Dian Wahyu Utami, Univ. of Queensland (Australia)
Hsi-Sheng Goan, Univ. of New South Wales (Australia)
Gerard J. Milburn, Univ. of Queensland (Australia)


Published in SPIE Proceedings Vol. 5276:
Device and Process Technologies for MEMS, Microelectronics, and Photonics III
Jung-Chih Chiao; Alex J. Hariz; David N. Jamieson; Giacinta Parish; Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray