Share Email Print

Proceedings Paper

Phase differential angular rate sensor: concept and analysis
Author(s): James D. John; Conrad F. Jakob; Thurai Vinay; Lijiang Qin
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper describes the structure and operation of a new differential phase angular rate sensor and analyses it's response to input rotation. It employs a vibrating beam mass structure that is forced into an elliptical path when subject to rotation due to the Coriolis effect. Two sensing elements are strategically located to sense a combination of drive and Coriolis force on each to create a phase differential representative of the input rotation rate. A general model is developed describing the device operation. The main advantages of the phase detection scheme are shown, including removing the need to maintain constant drive amplitude, independence of sensing element gain factor and novel response shapes. A ratio of device parameters is defined and shown to determine the device response shape. This ratio can be varied to give a high sensitivity around zero input rate or a response shape not seen before, that can give maximum sensitivity around an offset from the zero-rate input. This may be exploited in an array configuration for a highly accurate device over a wide input range. A worked example shows how the developed equations can be used as design tools to achieve a desired response.

Paper Details

Date Published: 2 April 2004
PDF: 9 pages
Proc. SPIE 5276, Device and Process Technologies for MEMS, Microelectronics, and Photonics III, (2 April 2004); doi: 10.1117/12.521563
Show Author Affiliations
James D. John, RMIT Univ. (Australia)
Conrad F. Jakob, RMIT Univ. (Australia)
Thurai Vinay, RMIT Univ. (Australia)
Lijiang Qin, RMIT Univ. (Australia)

Published in SPIE Proceedings Vol. 5276:
Device and Process Technologies for MEMS, Microelectronics, and Photonics III
Jung-Chih Chiao; Alex J. Hariz; David N. Jamieson; Giacinta Parish; Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?