Share Email Print

Proceedings Paper

Temperature-compensated miniature cylinder pressure sensor for automotive applications
Author(s): Marek T. Wlodarczyk
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The 1.7 mm diameter pressure sensor utilizes the principle of light intensity changes, transmitted by two optical fibers, upon reflection from a specially shaped, metal diaphragm deflecting under the effect of pressure. In an ultra low-cost and durable design suitable for automotive applications the sensor compensates for all major temperature effects encountered in combustion engines. The auto-referencing function performed by the sensor’s signal conditioner compensates for the temperature induced LED, photodiode, and fiber-to-opto-electronics coupling errors, sensor thermal drift, as well as fiber bending related light intensity changes. The direct bonding of optical fibers to the photodiode and LED chips results in minimum thermal errors and high part-to-part consistency. Sensor head materials and dimensions are optimized to compensate for the sensitivity changes associated with the diaphragm’s Young’s modulus temperature dependence. The miniature signal conditioner, based on an LED-photodiode transceiver and an ASIC, can be integrated within an automotive connector or a package small enough to fit inside the engine head. Over the signal conditioner temperature range of -40°C to 150°C and the sensor head continuous range of -40°C to 300°C a typical total accuracy of 1-2% is achieved.

Paper Details

Date Published: 8 March 2004
PDF: 8 pages
Proc. SPIE 5272, Industrial and Highway Sensors Technology, (8 March 2004); doi: 10.1117/12.516687
Show Author Affiliations
Marek T. Wlodarczyk, Optrand, Inc. (United States)

Published in SPIE Proceedings Vol. 5272:
Industrial and Highway Sensors Technology
Brian Culshaw; Samuel David Crossley; Helmut E. Knee; Michael A. Marcus; John P. Dakin, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?