Share Email Print

Proceedings Paper

Automatic calibration and neural networks for robot guidance
Author(s): Balaji Sethuramasamyraja; Masoud Ghaffari; Ernest L. Hall
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An autonomous robot must be able to sense its environment and react appropriately in a variable environment. The University of Cincinnati Robot team is actively involved in building a small, unmanned, autonomously guided vehicle for the International Ground Robotics Contest organized by Association for Unmanned Vehicle Systems International (AUVSI) each year. The unmanned vehicle is supposed to follow an obstacle course bounded by two white/yellow lines, which are four inches thick and 10 feet apart. The navigation system for one of the University of Cincinnati’s designs, Bearcat, uses 2 CCD cameras and an image-tracking device for the front end processing of the image captured by the cameras. The three dimensional world co-ordinates were reduced to two dimensional image coordinates as a result of the transformations taking place from the ground plane to the image plane. A novel automatic calibration system was designed to transform the image co-ordinates back to world co-ordinates for navigation purposes. The purpose of this paper is to simplify this tedious calibration using an artificial neural network. Image processing is used to automatically detect calibration points. Then a back projection neural algorithm is used to learn the relationships between the image coordinates and three-dimensional coordinates. This transformation is the main focus of this study. Using these algorithms, the robot built with this design is able to track and follow the lines successfully.

Paper Details

Date Published: 30 September 2003
PDF: 8 pages
Proc. SPIE 5267, Intelligent Robots and Computer Vision XXI: Algorithms, Techniques, and Active Vision, (30 September 2003); doi: 10.1117/12.515036
Show Author Affiliations
Balaji Sethuramasamyraja, Univ. of Cincinnati (United States)
Masoud Ghaffari, Univ. of Cincinnati (United States)
Ernest L. Hall, Univ. of Cincinnati (United States)

Published in SPIE Proceedings Vol. 5267:
Intelligent Robots and Computer Vision XXI: Algorithms, Techniques, and Active Vision
David P. Casasent; Ernest L. Hall; Juha Roning, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?