Share Email Print
cover

Proceedings Paper

Nonlinear optical properties of chiral polyesters: a joint experimental and theoretical study
Author(s): Philip Biju; K. Sreekumar
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A series of polyesters containing donor-acceptor π-conjugated polar segments (4,4'-azobenzene dicarbonyl chloride) and chiral building units [L(+)-diethyl tartrate] in the main chain were synthesized and characterized by spectroscopic (IR, UV-Vis, 1H NMR, 13C NMR), thermal (TG/DTG, DSC), and optical (refractive index, optical rotation techniques). Chiral order was induced with a preferred helical sense to attain noncentrosymmetric ordering of dipoles (polar order) in macroscopic dimensions by chemical synthesis (chemical poling). A comprehensive attempt has been made to correlate the polar order of the polymer chains with the chiral order arising out of a preferred helical sense of the chains. This has been achieved by adopting four different theoretical models and comparing the results with the experimentally observed values of the second order polarizability tensor β. The models used are (1) Logarithmic Law of Mixing (LLM), (2) the Extended Boundary Condition Method (EBCM), (3) The Random Field Ising Model (RFIM) and (4) Semiempirical Computational Model (SCM). The results of the theoretical predictions are compared with the experimentally determined values of β.

Paper Details

Date Published: 14 October 2003
PDF: 8 pages
Proc. SPIE 5062, Smart Materials, Structures, and Systems, (14 October 2003); doi: 10.1117/12.514840
Show Author Affiliations
Philip Biju, Univ. of Kerala (India)
K. Sreekumar, Cochin Univ. of Science and Technology (India)


Published in SPIE Proceedings Vol. 5062:
Smart Materials, Structures, and Systems
S. Mohan; B. Dattaguru; S. Gopalakrishnan, Editor(s)

© SPIE. Terms of Use
Back to Top