Share Email Print

Proceedings Paper

Compositionally and structurally modulated Pb(Mg1/3Nb2/3)O3-PbTiO3 relaxor thin films for microactuator application
Author(s): Apurba Laha; Saluru B. Krupanidhi
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Thin films of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(x = 0.1 to 0.3) (PMN-PT) were successfully grown on the platinum coated silicon substrate by pulsed excimer laser ablation technique. A thin template layer of LaSr0.5Co0.5O3 (LSCO) was deposited on platinum substrate prior to the deposition of PMN-PT thin films. The composition and the structure of the films were modulated via proper variation of the deposition parameter such as substrate temperature, laser fluence and thickness of the template layers. We observed the impact of the thickness of LSCO template layer on the orientation of the films. The crystallographic structure and compositional variation were confirmed with x-ray diffraction and energy diffraction x-ray (EDX) analysis. A room temperature dielectric constant varying from 2000 to 4500 was noted for different composition of the films. The dielectric properties of the films were studied over the frequency range of 100 Hz - 100 kHz over a wide range of temperatures. The films exhibited the relaxor-type behavior that was characterized by the frequency dispersion of the temperature of dielectric constant maxima (Tm) and also diffuse phase transition. This relaxor nature in PMN-PT thin films was attributed to freezing of the dipole moment, which takes place below a certain temperature. This phenomenon was found to be very similar to spin glass system, where spins are observed to freeze after certain temperature.

Paper Details

Date Published: 14 October 2003
PDF: 7 pages
Proc. SPIE 5062, Smart Materials, Structures, and Systems, (14 October 2003); doi: 10.1117/12.514576
Show Author Affiliations
Apurba Laha, Indian Institute of Science (India)
Saluru B. Krupanidhi, Indian Institute of Science (India)

Published in SPIE Proceedings Vol. 5062:
Smart Materials, Structures, and Systems
S. Mohan; B. Dattaguru; S. Gopalakrishnan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?