Share Email Print

Proceedings Paper

Visualization of aerocolloidal biological particles using 2D particle image velocimetry (PIV)
Author(s): Carsie A. Hall III; Sree Masabattula; Kazim M. Akyuzlu; Edwin P. Russo; Maren A. Klich
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Recent concerns over the possible use of airborne biological particles as weapons of mass destruction have significantly increased the attention that researchers are giving to this threat. The size of these particles, ranging from a fraction of a micrometer to several tens of micrometers, allows them to travel over long distances before settling out of the airstreams carrying these particles. Furthermore, the odd shapes of many of these particles along with uncertainties about their light scattering characteristics make detection and tracking quite a challenge. In the present paper, results are reported on the visualization of airborne biological particles using two-dimensional particle image velocimetry (PIV). These initial results show the utility of PIV in illuminating and tracking airborne biological particles. A compressed air nebulizer is used to aerosolize the biological particles inside a Plexiglas test section. The biological particles prepared for the nebulizer are first inoculated and cultured onto agar media, gypsum board, and acoustic ceiling tile to achieve an abundant growth of spores. A colloidal suspension of biological particles is then made using sterilized, de-ionized water and a mild surfactant to de-agglomerate the biological particles in the suspension. The concentration of biological particles in the colloidal suspension is determined using a hemacytometer. In the visualization experiments, images are captured for polystyrene latex (PSL) test particles, liquid water droplets, and spores of the fungal species Aspergillus versicolor. During the PIV system operation, two successive images are captured with a time delay of 50 μm to develop flow field velocities of the PSL test particles, liquid water droplets, and the A. versicolor spores.

Paper Details

Date Published: 10 November 2003
PDF: 9 pages
Proc. SPIE 5191, Optical Diagnostics for Fluids, Solids, and Combustion II, (10 November 2003); doi: 10.1117/12.507815
Show Author Affiliations
Carsie A. Hall III, Univ. of New Orleans (United States)
Sree Masabattula, Univ. of New Orleans (United States)
Kazim M. Akyuzlu, Univ. of New Orleans (United States)
Edwin P. Russo, Univ. of New Orleans (United States)
Maren A. Klich, U.S. Dept. of Agriculture (United States)

Published in SPIE Proceedings Vol. 5191:
Optical Diagnostics for Fluids, Solids, and Combustion II
Patrick V. Farrell; Fu-Pen Chiang; Carolyn R. Mercer; Gongxin Shen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?