Share Email Print

Proceedings Paper

Thin film 193-nm TNK measurement using multidomain genetic algorithm (MDGA) and with a combination of Beam Profile Reflectometry (BPR), Absolute Ellipsometry (AE), and spectroscopic ellipsometry (SE)
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In the l30nm process, controlling the critical dimension uniformity (CDU) within a wafer is crucial. In order to minimize CDU within a wafer, CD swing amplitude against film thickness must be minimized. It is observed that the CD swing amplitude is closely related to the reflectivity of the anti-reflective coating (ARC) layer under the resist. The suppressed reflectivity (ideally zero) from the ARC layer and underlying layers can be achieved by properly selecting a combination of thickness (T), refractive index (N) and extinction coefficient (K) of the ARC layer. Accurate and repeatable measurements of T, N, and K at a wavelength of 193nm play a key role in this film optimization process. In this paper we propose a new method to simultaneously measure T, N, and K for various silicon oxynitride (SION) and organic ARC films. The new methodology uses a multi-domain genetic algorithm (MDGA) to search for global fitting residual minima for SION and organic ARC films using 21-point line-scan data sets logged on each wafer with a combination of BPR, AE and SE measurement technologies. The MDGA-obtained dispersion curves form constituents of a Bruggeman effective medium approximation (EMA) model. By using this unique metrology tool combination, swing amplitudes can be reduced to less than 5nm. The measurement variations of N&K at 193nm from machine to machine on SION and organic ARC films can be minimized to as small as 0.002. We point out that there are no 193nm N&K standards in the world. In this work, we used a set of Therma-Wave standards with thicknesses traceable to NIST standards. We also used the published thermal oxide and crystalline Si dielectric constants (i.e., N&Ks) as our standards for dispersion. The matching of SE (as well as the other technologies) of each tool is ensured through calibrations of SE to the same set of standards. Finally, a recipe using the combination of BPR, AE, and SE technologies allows one to deal with the large TNK variations encountered in the production environment without losing the sensitivity to measure TNK precisely and accurately. On the contrary, a TNK recipe with SE technology only may yield reasonable precision results but would lose the sensitivity to the thin film TNK variation within the wafer and among the wafers.

Paper Details

Date Published: 4 November 2003
PDF: 13 pages
Proc. SPIE 5188, Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies, (4 November 2003); doi: 10.1117/12.507466
Show Author Affiliations
Jon L. Opsal, Therma-Wave, Inc. (United States)
Jingmin Leng, Therma-Wave, Inc. (United States)
Chih-Ming Ke, Taiwan Semiconductor Manufacturing Co., Ltd. (Taiwan)
Pei-Hung Chen, Taiwan Semiconductor Manufacturing Co., Ltd. (Taiwan)
Jeng-Horng Chen, Taiwan Semiconductor Manufacturing Co., Ltd. (Taiwan)
Yao-Ching Ku, Taiwan Semiconductor Manufacturing Co., Ltd. (Taiwan)

Published in SPIE Proceedings Vol. 5188:
Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies
Angela Duparre; Bhanwar Singh, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?