Share Email Print

Proceedings Paper

Development of a revolute-joint robot for the precision positioning of an x-ray detector
Author(s): Curt A. Preissner; Thomas J. Royston; Deming Shu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper profiles the initial phase in the development of a six degree-of-freedom robot, with 1 μm dynamic positioning uncertainty, for the manipulation of x-ray detectors or test specimens at the Advanced Photon Source (APS). While revolute-joint robot manipulators exhibit a smaller footprint along with increased positioning flexibility compared to Cartesian manipulators, commercially available revolute-joint manipulators do not meet our size, positioning, or environmental specifications. Currently, a robot with 20 μm dynamic positioning uncertainty is functioning at the APS for cryogenic crystallography sample pick-and-place operation. Theoretical, computational and experimental procedures are being used to (1) identify and (2) simulate the dynamics of the present robot system using a multibody approach, including the mechanics and control architecture, and eventually to (3) design an improved version with a 1 μm dynamic positioning uncertainty. We expect that the preceding experimental and theoretical techniques will be useful design and analysis tools as multi-degree-of-freedom manipulators become more prevalent on synchrotron beamlines.

Paper Details

Date Published: 27 October 2003
PDF: 12 pages
Proc. SPIE 5176, Optomechanics 2003, (27 October 2003); doi: 10.1117/12.505748
Show Author Affiliations
Curt A. Preissner, Argonne National Lab. (United States)
Thomas J. Royston, Univ. of Illinois/Chicago (United States)
Deming Shu, Argonne National Lab. (United States)

Published in SPIE Proceedings Vol. 5176:
Optomechanics 2003
Alson E. Hatheway, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?